On solutions of linear equations with polynomial coefficients

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small solutions to systems of polynomial equations with integer coefficients

The paper discusses a series of conjectures due to A. Tyszka aiming to describe boxes in which there exists at least one solution to a system of polynomial equations with integer coefficients. A proof of the bound valid in the linear case is given. 1 Two basic questions When facing systems of equations whose solutions are hard to determine, one is satisfied to determine (or at least estimate) t...

متن کامل

Definite Sums as Solutions of Linear Recurrences With Polynomial Coefficients

We present an algorithm which, given a linear recurrence operator L with polynomial coefficients, m ∈ N \ {0}, a1, a2, . . . , am ∈ N \ {0} and b1, b2, . . . , bm ∈ K, returns a linear recurrence operator L ′ with rational coefficients such that for every sequence h,

متن کامل

Liouvillian Solutions of Linear Differential Equations with Liouvillian Coefficients

Let L(y) = b be a linear differential equation with coefficients in a differential field K. We discuss the problem of deciding if such an equation has a non-zero solution in K and give a decision procedure in case K is an elementary extension of the field of rational functions or is an algebraic extension of a transcendental liouvillian extension of the field of rational functions. We show how ...

متن کامل

Exact solutions of linear equations with rational coefficients

An algorithm for computing the exact solutions of linear equations with rational coefficients, and its computer implementation, were described in [1].1 The basic idea of the algorithm is to convert the original system of equations into a system of congruences modulo various primes Pi, and combining the solutions by a procedure suggested by the Chinese Remainder Theorem. This process is continue...

متن کامل

On Global Non-oscillation of Linear Ordinary Differential Equations with Polynomial Coefficients

Based on a new explicit upper bound for the number of zeros of exponential polynomials in a horizontal strip, we obtain a uniform upper bound for the number of zeros of solutions to an ordinary differential equation near its Fuchsian singular point, provided that any two distinct characteristic exponents at this point have distinct real parts. The latter result implies that a Fuchsian different...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Polonici Mathematici

سال: 2018

ISSN: 0066-2216,1730-6272

DOI: 10.4064/ap171122-29-12